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Abstract. We use the discrete velocity models to study the spectral problems related to the 1D plane wave
propagation in monatomic gases which are fundamental in the rarefied gases dynamics and nonequilibrium
statistical thermodynamics. The results show that 6- and 8-velocity models can only capture the prop-
agation of diffusion mode (entropy wave) in the intermediate Knudsen number regime. 4-velocity model
instead captures the propagation of sound mode quite well after the comparison with the continuum-
mechanic results.

PACS. 43.35.+d Ultrasonics, quantum acoustics, and physical effects of sound – 47.45.-n Rarefied gas
dynamics – 62.80.+f Ultrasonic relaxation

1 Introduction

The problem of ultrasound dispersion is special because,
although it is two-dimensional (x and t), the variables
can be separated and, at least at the outset, the prob-
lem can be treated without boundaries. It is clear that
the classical theory of sound involves a number of ap-
proximations, the first of which is linearity. But there are
fundamental limitations, very long wavelengths and low
frequencies. There have been several investigations [1-3]
concerned with the spectral problems of very high fre-
quency plane sound waves. Their main concern is on
the measurable (sound) mode of propagation. Initially
researchers used continuum-mechanic approaches, e.g.
Navier-Stokes and/or its-extended equations to study this
kind of problem [4]. The results obtained can only be valid
up to the continuum limit or small Knudsen number (lowly
rarefied) cases. The propagation of the Navier-Stokes dif-
fusion mode (or the second mode [5] of the Navier-Stokes
theory of sound propagation), which has its wave number
equal to its attenuation rate for the range of continuum-
regime, other than the sound mode in rarefied gases, how-
ever, were also reported then [2,5]. The main associated
troubles are, as far as the authors know, there were no
measurements about the propagation of diffusion mode.

Later on, ultrasound propagation in highly rarefied
monatomic gases, i.e., gases in which the ratio of molec-
ular collision to sound frequency is small, had been stud-
ied by using the linearized Boltzmann equation for the
dispersion relation since early ’60s [6-9]. Even there were
measurements of forced ultrasound propagation in gases
for comparison, but questions regarding boundary condi-
tions [10] were avoided by most of these workers who did

initial value problems in an unbounded gas rather than
the semi-infinite problem to which measurements refer.

By using the Discrete Boltzmann approaches, however,
only in late ’80s did some researchers start to study the 1D
ultrasound propagation by calculating the speed of sound
[9] or the dispersion relations [11] in the large where the
velocity of propagation of sound wave can be classically
determined by looking for the properties of the solutions
of the conservation equations referred to the Maxwellian
state. Their results were still centered on the sound mode
of the spectra.

In the discrete Boltzmann approach, the main idea is
to consider that the particle velocities belong to a given
finite set of velocity vectors. Only the velocity space is
discretized, the space and time variables being continuous.
The discrete velocity models [12] thus come. For a lattice
gas, the space and time variables are also discretized.

In this Paper, the spectra of discrete velocity models
for hard-sphere gases are our main concern. The verifica-
tion of our approaches with the previous available mea-
surements (propagation of forced sound-mode) has been
done in [13], the argues about the differences between dif-
ferent discrete velocity models included. Here, we only
consider the 1D propagation of plane wave by neglecting
the complicated real boundary conditions or the effects of
transmitter/receivers. The results will be the propagation
of sound as well as diffusion modes.

2 Formulations

We assume that the gas is composed of identical parti-
cles of the same mass. The velocities of these particles
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are restricted to, e.g.: v1,v2, · · · ,vp, p is a finite positive
integer. The discrete number density of particles are de-
noted by Ni(r, t) associated with the velocity vi at point r
and time t. Considering binary collision only, the model of
discrete Boltzmann equation proposed in [12] is a system
of 2n(= p) semilinear partial differential equations of the
hyperbolic type:

∂

∂t
Ni + vi ·

∂

∂x
Ni =

2cS

n

n∑
j=1

NjNj+n −NiNi+n,

i = 1, · · · , 2n, (1)

where Ni = Ni+2n are unknown functions, and vi
=c(cos[(i−1)π/n], sin[(i−1)π/n]); c is a reference velocity
modulus, S is an effective collision cross-section.

Since passage of the sound wave causes a small depar-
ture from equilibrium (Maxwellian type) resulting in en-
ergy loss owing to internal friction and heat conduction,
we linearize above equations around a uniform Maxwellian
state (N0) by setting Ni(t,x) =N0 (1+Pi(t,x)), where Pi
is a small perturbation. After some manipulations we then
have[
∂2

∂t2
+ c2 cos2 (m− 1)π

n

∂2

∂x2
+ 4cSN0

∂

∂t

]
Dm =

4cSN0

n

n∑
k=1

∂

∂t
Dk, (2)

where Dm = (Pm + Pm+n)/2, m = 1, · · · , n, since D1 =
Dm for 1 = m (mod 2n). We are ready to look for the
solutions in the form of plane wave Dm = am exp i(kx−
ωt), (m = 1, · · · , n), with ω = ω(k). This is related to the
dispersion relations of 1D forced ultrasound propagation
of rarefied gases problem. So we have(

1 + ih− 2λ2 cos2 (m− 1)π

n

)
am −

ih

n

n∑
k=1

ak = 0,

m = 1, · · · , n, (3)

where λ = kc/(
√

2ω), h = 4cSN0/ω ∝ 1/Kn is the rar-
efaction parameter of the gas; Kn is the Knudsen number
which is defined as the ratio of the mean free path of gases
to the wave length of ultrasound.

Let am = C/(1+ ih−2λ2 cos2[(m−1)π/n]), where C is
an arbitrary, unknown constant, since we here only have
interests in the eigenvalues of above relation. The eigen-
value problems for different 2n-velocity model reduces to
Fn (λ) = 0, or

1−
ih

n

n∑
m=1

1

1 + ih− 2λ2 cos2 (m−1)π
n

= 0. (4)

We solve n = 2, 3, and 4 cases respectively, i.e., 4-velocity,
6-velocity and 8-velocity cases. The corresponding eigen-
value equations become algebraic polynomial-form with
the complex roots being the results of λs [14,15].

For 2 × 2-velocity model, we obtain 1 − (ih/2)∑2
m=1[1/(1 + ih− 2λ2 cos2 (m− 1)π/2)] = 0.
Likewise, we have 6λ4−(15+22ih)λ2− 8h2 +14ih+6

= 0; k0λ
8 + k1λ

6 +k2λ
4 +k3λ

2 + k4 = 0, with k0 = 4b,
k1 = −12b−10ĉ, k2 = 13b+12ĉ+9b · ĉ, k3 = −6b−10b · ĉ−
4h2·ĉ, k4 = 3b·ĉ+ĉ2·b+3b h2·ĉ, where b = 1+h2, ĉ = 1−ih;
for 2×3-velocity model, 2×4-velocity model, respectively.

3 Results and discussions

We can obtain the complex roots (λs) for the polynomial
equations above. The roots are the values for the nondi-
mensional dispersion (real part) and the attenuation or
absorption (imaginary part), respectively. The spectra of
2× n-velocity model for n = 2, 3, 4 look entirely different
[16]. The results for different models have been put into
Figure 1, with the Navier-Stokes (N-S) data [2] included
for comparison. We can observe that 4-velocity model cap-
tures the propagating behavior of sound mode quite well
[13] and 6- and 8-velocity model, instead, seems to cap-
ture only the propagating mode of diffusion [2,5,16-18].
There are perhaps basic limitations or assumptions in all
these models: the higher molecular velocities are missing
[11] when the results of sound-mode were compared to
the measurements or continuous kinetic theories. The real
and imaginary part of the diffusion mode are, for both
(6- and 8-velocity) models, increasing with the increasing
rarefaction parameter h especially near the continuum-
limit. Meanwhile those of the diffusion mode from the
Navier-Stokes approach increase linearly with h.

From a more modern point of view, dissipation of the
sound wave arises fundamentally because of a necessary
coupling of density and energy fluctuations induced by the
disturbance. Within one mean free path or so of an oscil-
lating boundary, a free molecular flow solution can prob-
ably be computed. The damping will quite likely turn out
to be linear because the damping mechanism is the shift
in phase of particles which hit the wall at different times.
To conclude for the results of sound mode, it was observed
that, whereas the Navier-Stokes approach provides a good
modelling at low frequencies, it is definitely not adequate
at high frequencies h ≤ 2. Especially the zero dispersion
(phase speed) as h approaches zero [6]. As the wavelength
of sound is made significantly shorter, so that the effects
of viscosity and the heat conduction are no longer small,
the validity of Navier-Stokes approach itself becomes ques-
tionable. If there is no rarefaction effect (h = 0), we have
only real roots for all the models [16]. Once h 6= 0, the
imaginary part appears and the spectra diagram for each
model looks entirely different. We can see that, for 4-
velocity model, there is one branch starting from h = 0.1
then to the maximum imaginary-part location h = 1.692
where the attenuation reaches the peak and finally reach-
ing the limit at the real axis (i.e., attenuation disappears,
λreal = 1). But, for 8-velocity model, this behavior disap-
pears, instead, there is one turn (the locus starting from
h = 0.1) at h = 1.2 where the dispersion reaches the min-
imum. The differences between different velocity models
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Fig. 1. Comparison with Navier-Stokes approach for dispersion (upper data) and attenuation (lower data) w.r.t. rarefaction
parameter h.

may be due to the different Maxwellian (thermodynamic
equilibrium state) corresponding to physical and/or un-
physical invariants [13,16].

In brief summary, the dispersion (krc/(
√

2ω)) reaches
a continuum-value of one for the 4-velocity model once h
increases to infinity. The attenuation (kic/(

√
2ω)) for the

same model, instead, firstly increases up to h ∼ 1.7 then
starts to decrease as h increases furthermore. As for the

6- and 8-velocity models, the attenuation and dispersion
keep increasing without bound as h increases. The results
may show the intrinsic thermodynamic properties of the
Maxwellian states corresponding to the different models.
By the situation h ∼ 5, the diffusion mode having an
attenuation only about twice that of the sound mode, this
is perhaps the point at which some attention should be
paid to the boundary conditions.
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